معَ سالم 5 ريالات اشترى منها علبة عصير ثمنها ريالان ،فإن الكسرين المتكافئينِ اللذان يمثلانِ ثمنَ علبةِ العصيرِ بالنسبةِ لِمَا كانَ معَ سالم منْ نقودٍ. ٤ ٥ = ٨ ١٠ ٢ ٥ = ٤ ١٠ ٤ ١٠ = ٦ ١٥ ٢ ١٠ = ٦ ١٥؟
الإجابة الصحيحة من خلال موقع بوابة الإجابات هي:
٢/٥ = ٤/١٠.
الإجابة الصحيحة هي: ٢/٥ = ٤/١٠
شرح الحل:
- فهم المسألة: سالم معه 5 ريالات، وأنفق 2 ريال على علبة عصير. نريد أن نجد الكسر الذي يمثل المبلغ الذي دفعه (2 ريال) بالنسبة للمبلغ الكلي الذي كان معه (5 ريالات).
- كتابة الكسر الأول:
- البسط (الرقم العلوي) يمثل المبلغ الذي دفعه سالم: 2 ريالات.
- المقام (الرقم السفلي) يمثل المبلغ الكلي الذي كان مع سالم: 5 ريالات.
- إذن، الكسر الأول هو: 2/5 (اثنان على خمسة).
- إيجاد الكسر المتكافئ:
- الكسر المتكافئ هو كسر يمثل نفس القيمة ولكن بأرقام مختلفة. نجد الكسر المتكافئ بضرب البسط والمقام في نفس العدد.
- لنجرب ضرب البسط والمقام في 2:
- 2 × 2 = 4
- 5 × 2 = 10
- إذن، الكسر المتكافئ هو: 4/10 (أربعة على عشرة).
- التحقق من التكافؤ:
- الكسران 2/5 و 4/10 متكافئان لأنهما يمثلان نفس الجزء من الكل. تخيل أنك قسمت 5 ريالات إلى 5 أجزاء متساوية، كل جزء يساوي ريالاً واحداً. سالم أنفق 2 من هذه الأجزاء. الآن، تخيل أنك قسمت نفس الـ 5 ريالات إلى 10 أجزاء متساوية، كل جزء يساوي 50 هللة. سالم أنفق 4 من هذه الأجزاء. في كلتا الحالتين، أنفق سالم نفس المبلغ.
- الخلاصة: الكسران المتكافئان اللذان يمثلان ثمن علبة العصير بالنسبة لما كان مع سالم من نقود هما 2/5 و 4/10.
اذا كان لديك إجابة افضل او هناك خطأ في الإجابة علي سؤال معَ سالم 5 ريالات اشترى منها علبة عصير ثمنها ريالان ،فإن الكسرين المتكافئينِ اللذان يمثلانِ ثمنَ علبةِ العصيرِ بالنسبةِ لِمَا كانَ معَ سالم منْ نقودٍ. ٤ ٥ = ٨ ١٠ ٢ ٥ = ٤ ١٠ ٤ ١٠ = ٦ ١٥ ٢ ١٠ = ٦ ١٥ اترك تعليق فورآ.