الإجابة:
حد المتتالية الحسابية الثاني هو ١٠.
التفسير:
المتتالية الحسابية هي متتالية من الأعداد حيث يكون الفرق بين أي حدين متتاليين ثابتاً. في هذه المتتالية، الفرق بين الحد الأول والأخير هو ٢٠ - ٥ = ١٥. إذا كان هناك أربعة حدود بين الحدين الأول والأخير، فإن كل حد يبعد عن الحد الذي يليه بقيمة ١٥ / ٤ = ٣.٧٥.
لذلك، فإن الحد الثاني هو ٥ + ٣.٧٥ = ١٠.
الشرح:
يمكن أيضاً حل هذه المشكلة باستخدام الصيغة الصريحة للمتتالية الحسابية:
a_n = a_1 + (n - 1) * d
حيث:
- a_n هو الحد النوني للمتتالية
- a_1 هو الحد الأول للمتتالية
- d هو الفرق المشترك للمتتالية
- n هو رقم الحد
في هذه المتتالية،
- a_1 = 5
- a_n = 20
- n = 2 (لأن الحد الثاني هو الحد الثالث في المتتالية)
لذلك،
a_2 = 5 + (2 - 1) * 3.75
a_2 = 5 + 3.75
a_2 = 10
وبذلك نحصل على نفس الإجابة.