عملية القسمة المطولة التي تمثل إيجاد x 2 - 6 x - 20 ÷ x + 2 هي؟
إجابة الطالب المختصرة من خلال موقع بوابة الإجابات هي
x-8 _____________x+2 |x²-6x-20______| x²+2x ___________ -8x-20 - 8x -16
لإيجاد نتيجة القسمة المطولة لـ (x² - 6x - 20) ÷ (x + 2)، نتبع الخطوات التالية:
1. **الترتيب:** نرتب الحدود في كل من المقسوم (x² - 6x - 20) والمقسوم عليه (x + 2) بترتيب تنازلي للقوى. وهذا هو بالفعل الحال هنا.
2. **القسمة:** نقسم الحد الأول من المقسوم (x²) على الحد الأول من المقسوم عليه (x).
x² / x = x
إذن، الحد الأول في الناتج هو x.
3. **الضرب:** نضرب الناتج (x) في المقسوم عليه (x + 2).
x * (x + 2) = x² + 2x
4. **الطرح:** نطرح نتيجة الضرب (x² + 2x) من المقسوم (x² - 6x - 20).
(x² - 6x - 20) - (x² + 2x) = -8x - 20
5. **تنزيل الحد التالي:** ننزل الحد التالي من المقسوم (-20) إلى الباقي الجديد (-8x - 20).
6. **القسمة (مرة أخرى):** نقسم الحد الأول من الباقي الجديد (-8x) على الحد الأول من المقسوم عليه (x).
-8x / x = -8
إذن، الحد التالي في الناتج هو -8.
7. **الضرب (مرة أخرى):** نضرب الناتج الجديد (-8) في المقسوم عليه (x + 2).
-8 * (x + 2) = -8x - 16
8. **الطرح (مرة أخرى):** نطرح نتيجة الضرب (-8x - 16) من الباقي الجديد (-8x - 20).
(-8x - 20) - (-8x - 16) = -4
9. **الباقي:** بما أن درجة الباقي (-4) أقل من درجة المقسوم عليه (x + 2)، فإننا نتوقف. الباقي هو -4.
**النتيجة:**
الناتج هو x - 8 والباقي هو -4.
إذن، (x² - 6x - 20) ÷ (x + 2) = x - 8 - 4/(x + 2)
**تمثيل عملية القسمة المطولة:**
```
x - 8
x + 2 | x² - 6x - 20
-(x² + 2x)
-----------
-8x - 20
-(-8x - 16)
-----------
-4
```
**إجابة نهائية:**
x - 8 - 4/(x+2)
اذا كان لديك إجابة افضل او هناك خطأ في الإجابة علي سؤال عملية القسمة المطولة التي تمثل إيجاد x 2 - 6 x - 20 ÷ x + 2 هي اترك تعليق فورآ.